

Hale School Mathematics Specialist Test 1 --- Term 1 2018

Complex Numbers

	/ 44
Name:	,

Instructions:

- Calculators are NOT allowed
- External notes are not allowed
- Duration of test: 45 minutes
- Show your working clearly
- Use the method specified (if any) in the question to show your working (Otherwise, no marks awarded)
- This test contributes to 7% of the year (school) mark

All arguments must be given using principal values.

1. [3, 4 = 7 marks]

Give exact expressions for each of the following in the form a + bi:

(a)
$$\frac{\overline{1-i}}{(2+i)^2}$$

(b)
$$\left(1-\sqrt{3}i\right)^5$$

2. [4, 2 = 6 marks]

(a) Use de Moivre's theorem to find all the exact solutions to the equation $z^4 = i \text{ in polar form}$

(b) Suppose α and β are two distinct roots of $z^n = i$, where n is a positive integer. Explain why $|\alpha + \beta| < 2$.

3. [3, 3 = 6 marks]

Sketch the following loci on the complex planes provided:

4. [4 marks]

Given $z = (2a+3i)^3$ and $a \in \mathbb{R}^+$, find the value(s) of a such that $\arg z = 135^\circ$.

5. [4 marks]

Describe the locus of points defined by the equation $\left|z-i\right|=2\left|z+1\right|$.

6. [4, 4 = 8 marks]

(a) The polynomial $x^3 + ax + b$ has a factor of x + 2 and a remainder of -60 when divided by x - 2. Determine the values of a and b.

(b) One root of $P(z) = z^3 + az^2 + 3z + 9$ is purely imaginary. If a is real, find a and hence factorise P(z) into linear factors.

7. [4, 5 = 9 marks]

Show that if $z = cis\theta$ then:

a)
$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

b) Use the previous result to show that $\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$